AQA qualification support

AS/A-level Environmental Science

Preparing to Teach

Specimen assessment materials and mark schemes

Published date: Summer 2017version 1

Permission to reproduce all copyright materials have been applied for. In some cases, efforts to contact copyright holders have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements in future documents if required.

	U
	_
As Paper 1- Q.1 and mark scheme	5
AS Paper 1- Q.3 and mark scheme	8
AS Paper 1- Q.4 and mark scheme	12
AS Paper 1- Q.10 and mark scheme	13
A-level Paper 1- Q.3 and mark scheme	17
A-level Paper 1- Q.10 and mark scheme	19
A-level Paper 2- Q.8 and mark scheme	23
A-level Paper 2- Q.9 and mark scheme	25
Level of response mark scheme: 9-mark questions	30
Level of response mark scheme: 25-mark questions	31

AS Paper 1- Q.1 and mark scheme

0 1 . 0 Figure 1 shows some features of the carbon cycle.

Figure 1

Named process with annual movement of carbon /10⁹ t

01.1	Complete Figure 1 by adding the names of the two missing transfer processes A and B .
	[2 marks]
01.2	The amount of carbon in the marine biomass is in a state of dynamic equilibrium.
	Calculate the amount of carbon moved annually from the marine biomass by the process of death and sinking.
	[1 mark]
	∠ 10 ⁹ t
01.3	Calculate the residence time for carbon dissolved in the sea surface reservoir, using the formula:
	residence time =amount in the reservoir
	[1 mark]
	years
01.4	Figure 1 shows that the amount of carbon in the atmosphere is not in a state of dynamic equilibrium. Growing more trees could help restore the balance of carbon in the atmosphere.
	Calculate the mass of extra carbon that would have to be absorbed by trees to restore a state of dynamic equilibrium in the atmosphere.
	[1 mark]

10⁹ t

Qu	Part	Marking guidance	Comments	Total marks	AO
01	1	A = photosynthesis B = sedimentation/fossilisation		2	AO2
01	2	4	Absorbed – Decay = Death and sinking	1	AO2
01	3	42.42 Accept 42.4	7000/(36 + 37 + 92) = 42.4 Or 7000/(90 + 35 + 40) = 42.4	1	AO2
01	4	5	(7 +90 + 55 + 65) - (92 + 120) = 5	1	AO2

AS Paper 1- Q.3 and mark scheme

	Act (1981). Describe how the Wildlife and Countryside Act (1981) protects animal spec	ies. [2 marks]
03.2	Give two scientific reasons why the conservation of wildlife is important for agricultural productivity.	future [2 marks]
03.3	Give one conservation designation that may be used to protect the habitat of endangered species in the UK.	of [1 mark]
03.4	Explain why biological corridors are important in wildlife conservation.	[3 marks]

AQA^C

0 3 . 5 Figure 2 shows leg rings used in ecological studies of birds and Figure 3 shows a Bewick's Swan with an electronic tracking collar.

Figure 2

Figure 3

Figure 4 shows the route taken by one Bewick's Swan as it migrated from the UK to Russia.

Figure 4

Explain why the electronic tracking collar provides more useful information about swan migration than the leg rings.

[2 marks]

Qu	Part	Marking guidance	Comments	Total marks	AO
03	1	Any two from:		2	AO1
		 illegal to injure illegal to collect 			
		 illegal to sell illegal to disturb breeding/nesting designation of protected habitat 	y sites		
03	2	Any two from:		2	AO1
		role in nutrient recyclingsource of genes for crop breedin	g/GM		
		crop pollination			
		role in biological control of pests			
03	3	One named conservation designation	n:	1	AO1
		Site of Special Scientific Inter	rest/SSSI		
		Local Nature Reserve/LNR	B		
		Ramsar site			
		Special Area of Conservation	/SAC		
		Natura 2000 site			
		Marine Nature Reserve/MNR Marine Conservation Zone/M	ICZ		
		Marine Protected Area/MPA National Park			
		Reject AONB/Green Belt/unqualified Country Park	nature reserve/unqualified		

03	4	 Decreased fragmentation/prevents islandisation links habitats Any two from: increased access to resources on other areas prevention of separation of breeding populations reduced inbreeding risk of isolated populations larger gene pool of populations that can mix allows recolonisation after local extinction 	Students must show an understanding that the conservation role of biological corridors is for the wildlife in the habitats they link, not in the corridor habitat itself.	1	AO2
----	---	---	--	---	-----

03	5	Any two from:		AO2
		 the tracking collar provides continual data record throughout the journey intermediate destinations can be identified periods of travel/rest can be identified feeding sites can be identified threats to survival can be identified in-journey habitats that need protecting can be identified Accept converse statements about leg rings 		

AS Paper 1- Q.4 and mark scheme

0 4 . **0 Table 2** shows the carbon storage in trees and dead organic matter of three areas of forest.

Table 2

	Mangrove forest	Temperate broadleaf forest	Tropical rainforest
Total living biomass/ t ha ⁻¹	4320	2297	1558
Water content of living biomass / % mass	50	35	45
Carbon in living biomass / % of total carbon	32	45	85
Above ground living biomass / % of total living biomass	48	75	84
Below ground living biomass / % total living biomass	52	25	16
Carbon in dead organic matter / t ha ⁻¹	660	180	120
Carbon content of wood / % of dry biomass	49.0	48.5	48.2

0 4 . **1** Use information from **Table 2** to calculate the mass of carbon dioxide that would be released if the trees from 25ha of mangrove forest were cut down and then burnt.

Atomic masses: C = 12, O = 16.

[3 marks]

Show your working

Mass of CO₂

Qu	Part	Marking guidance	Comments	Total marks	AO
04	1	One mark for correct answer for each stage:	Calculation commentary	3	AO2
		First mark Total dry biomass above ground = 54000	(4320/100 x 50) x 25 = 54000t		
		Carbon in above ground biomass = 12700.8t	48% of this is above ground 54000/100 x 48 = 25920t		
			49% of this is C 25920/100 x 49 = 12700.8t		
		CO_2 released = 46569.6t			
		Accept 46566.67 – 46569.6			
		ecf	Mass of CO ₂ from C combustion $12700.8/12 \times 44 = 46569.6t$		
		Three marks for correct final answer with no working/correct working			

AS Paper 1- Q.10 and mark scheme

Table 5 shows features of the water samples collected from five different sources:

- a geothermal spring
- seawater
- a river
- rain water
- a limestone aquifer.

	Sample A	Sample B	Sample C	Sample D	Sample E
Calcium content / mg l ⁻¹	24.0	0.60	104.0	7.5	400.0
Sodium chloride / mg l ⁻¹	25.0	0.85	80.0	55.0	35 000.0
Total dissolved solids / mg l ⁻¹	135.0	3.20	670.0	220.0	40 000.0
рН	7.4	5.70	7.6	5.5	8.2
Temperature range / °C	4 – 18	0 – 24	9.8 – 10.1	45	9.5 – 17.5
Turbidity	Medium/high	Low	Low	Low	Low/medium
Dissolved oxygen / % saturation	65 – 92	100	45 – 65	40	75 – 90
Faecal coliform count / number per 100 ml	0 – 5050	0	0	0	0 – 450

Table 5

1 0 . 1 Using the information from **Table 5** and your own knowledge, identify the source at which **Sample A** was collected.

[1 mark]

[1 mark]

[1 mark]

A	Geothermal spring	0
В	Seawater	0
С	River water	0
D	Rain water	0
Е	Limestone aquifer	0

1 0 . 2 Using the information from **Table 5** and your own knowledge, identify the source at which **Sample B** was collected.

A	Geothermal spring	0
В	Seawater	0
С	River water	0
D	Rain water	0
Е	Limestone aquifer	0

Using the information from **Table 5** and your own knowledge, identify the source at which **Sample D** was collected.

Α	Geothermal spring	0
В	Seawater	0
С	River water	0
D	Rain water	0
Е	Limestone aquifer	0

10.4Use data from Table 5 and your own knowledge to justify each of your choices of source in questions 10.1, 10.2 and 10.3.

[3 marks]

Sample A	
Sample B	
Sample D	

Qu	Part	Marking guidance	Comments	Total	AO
				marks	

10	1	One mark for correctly identifying the water source Sample A : river water (C)	Students should be able to analyse the table of data and select the information that allows the correct water sources to be identified and the other possibilities to be rejected.	1	AO3 = 1
----	---	--	---	---	---------

10	2	One mark for correctly identifying the water source Sample B : rainwater (D)	Students should be able to analyse the table of data and select the information that allows the correct water sources to be identified and the other possibilities to be rejected.	1	AO3 = 1
----	---	--	---	---	---------

10	3	One mark for correctly identifying the water source Sample D : geothermal spring (A)	Students should be able to analyse the table of data and select the information that allows the correct water sources to be identified and the other possibilities to be rejected.	1	AO3 = 1
----	---	--	---	---	---------

10	4	One mark for features that identify it and exclude others, for each source Sample A : high turbidity, high maximum coliform count, but low dissolved solid/calcium/sodium level. Sample B : highest dissolved oxygen saturation, lowest dissolved solid/chloride/calcium	Students should be able to analyse the table of data and select the information that allows the correct water sources to be identified and the other possibilities to be rejected.	3	AO3 = 3
		content.			
		Sample D : highest temperature, no coliform bacteria, low turbidity.			

A-level Paper 1- Q.3 and mark scheme

0 3 . 2 Figure 4 shows the mass of tin reserves that occur at different ore grades.

Figure 4

Draw a line of best fit and use it to estimate the mass of tin ore that would exist in ores of 0.35% purity.

[1 mark]

_____/10⁶ t

03.3

Explain why a reduction in the market price for tin would change the 'cut-off ore grade'.

[2 marks]

011	Part	Marking guidance	Comments	Total	۸Os
Qu	Tart	Marking guidance	Comments	Total	AU3
				marke	
				IIIai Ko	

03	2	32 Accept correct reading from the logarithmic y-axis using the line of best fit they have drawn	Students must show an understanding that logarithmic scales have cycles with a 10-fold change in values with each cycle.	1	AO2
03	3	Less money available for extraction/processing Increased Cut off ore grade (COOG)	Students must show understanding of the relationship between extraction costs, ore purity and economic viability.	2	AO2

A-level Paper 1- Q.10 and mark scheme

1 0 . **0 Figure 12** shows changes in the area of Arctic ice in the sea.

Figure 12

1 0 . 1 Use information from **Figure 12** to calculate the difference in mean annual change in ice area between 1980 to 1996 and 1996 to 2012.

[2 marks]

Show your working

1

Difference =

0. **2** Use details of named technologies to explain how satellite surveys are used to collect reliable data about changes in the mass of ice on the Earth's surface.

[4 marks]

1 0 . 3

Explain why it is difficult to accurately predict future changes in the amount of ice on land.

[9 marks]

Qu	Part	Marking guidance	Comments	Total marks	AOs
10	1	First mark for calculating rates for both periods Second mark for calculation of difference Rate 1980 -1996 7.2 - 6.7/16 = 0.03 Rate 1996 - 2012 6.7 - 3.8/16 = 0.18 Difference = $0.18 - 0.03 = 0.15$ Accept correct calculations based on values from graph ± 0.1 of values shown above. Maximum possible range 0.126 to 0.172		2	AO2
		Award both marks for correct answer with no working.			

10	2	Any two details of satellite or	4	AO1 = 2
		sensor operation (related to ice		
		mass surveys):		AO2 = 2
		eg Features of satellite orbits		
		Polar orbit		
		I ow altitude orbit		
		Short orbital period		
		Multiple orbits/composite image		
		inalipio orbito, composito imago		
		Any two details of data collected of		
		nameu senson/satenite.		
		Data collected by sensors		
		Gravity measurement		
		• Change in orbit height/velocity		
		Change in distance between		
		satellites (for GRACE)		
		Radar altitude measurement		
		• Radar altitude measurement to		
		surface of sea/ice surface		
		Estimate ice height above sea		
		level allows ice mass estimate		
		Named satellite/sensors		
		Satellites that monitor ice mass		
		• GRACE		
		Gravity field and steady-state		
		Ocean Circulation Explorer		
		(GOCE)		
		Sensors that monitor ice mass		
		Electrostatic Gravity		
		Gradiometer (EGG)		
		Gravimeter		

10	3	9 mark levels of response question	9	AO1 = 4
		Lack of accurate data on past trends		AO2 = 3
		ice core data not available		AO3 = 2
		in all areas		
		Impact of negative feedback mechanisms • ice cover – albedo • low-level cloud cover - albedo • natural carbon sequestration		
		Impact of positive feedback mechanisms		
		melting permafrost		
		 low albedo of exposed 		
		ground/water		
		 methane hydrate 		
		 increased forest/peat fires 		
		 increased DOM decay 		
		Lack of understanding of natural processes affecting: • temperature • precipitation		
		wind direction		
		wind velocity		
		Lack of understanding of interconnections of natural processes Time delay between cause and effect Different timescales of effects Future changes in human activities (that affect climate change) • greenhouse gas emissions • carbon sequestration/CCS		
		geoengineering		
1	1		1	1

A-level Paper 2- Q.8 and mark scheme

0 8 . 0

African Forest Elephants are identified as vulnerable on the IUCN Red List. The population is thought to have declined by around 65% between 2002 and 2011. They breed relatively slowly, with a maximum population growth rate of 5% per year. In 2014, the death rate caused by poaching was estimated to be 9% per year. Elephants are herbivores, eating many foods including the fruit of more than 70 tree species. They sometimes reach the fruit they want by pushing trees over.

Some of these fruits are only eaten by African Forest Elephants, such as Omphalocarpum which has large tough fruit that they split open with their tusks. The elephants are not ruminants and do not repeatedly chew and re-digest their food, so about 50% of their food passes out undigested in their dung.

Elephants travel longer distances than other forest mammals to find food, travelling up to 60 km along paths to avoid having to push through the dense forest vegetation. They travel in small family groups, although males are often solitary.

In moist areas, they clear vegetation and create waterholes so they can drink and get access to essential mineral nutrients.

African Forest Elephants have few natural predators, although young or old individuals may be killed by predators.

Being such large, impressive animals, elephants are popular with the public and raise the profile of wildlife conservation. However, there are few ecotourism opportunities in the forests of West Africa where they live.

0 8 . 1 Use the information above and your own knowledge to explain why the African Forest Elephant is considered to be a keystone species.

[5 marks]

Qu	Part	Marking guidance	Comment	Total marks	AO
08	1	 Any five reasons from: Disproportionate effect on the community relative to their abundance/low functional redundancy Seed dispersal Seeds not destroyed by rumination/chewing Undigested seeds in dung Greater dispersal distance of seeds Paths for other species Create water holes Creation of clearing Increased water availability Increased mineral nutrient availability Dung is food for other species Other species that rely on trees Control of named abiotic factors 	Students must understand the concept of keystone species and apply this to an unfamiliar species. They must analyse and interpret the passage to select information that demonstrates this role for the African Forest Elephant.	5	AO2 = 2 AO3 = 3

A-level Paper 2- Q.9 and mark scheme

09.0

The likelihood that a fish species is overexploited is affected by its breeding biology and the fishing methods used.

Table 6 shows Details of the ecology and fisheries of the Atlantic Mackerel and Orange Roughy.

	Fish species		
Feature	Atlantic Mackerel	Orange Roughy	
	Scomber scombrus	Hoplostethus atlanticus	
Age of first breeding /yrs	2	20	
Eggs laid per kg of mass	80 000	30 000	
Maximum lifespan /yrs	20	150	
Maximum length /cm	45	75	
Maximum mass /kg	2.5	7.0	
Water depth /m	0 - 100	500 - 1200	
Mean length of caught	30	35	
fish/cm			
Mean age of caught fish	2	10	
/yrs			
Time of fishing	During spawning season	During spawning season	
	when fish congregate to	when fish congregate to	
	mate and lay eggs	mate and lay eggs	
Habitat	Pelagic water (near	Demersal (near seabed)	
	surface and mid-water)		
Shoal composition	Single species shoals	Mixed species shoals	
Fishing area and method	European Union:	All areas: demersal	
	purse seining and	trawling	
	handlines		
	Iceland: pelagic trawling		

Table 6

0 9 . **1** Use information from **Table 6** and your own knowledge to explain why the Orange Roughy is more vulnerable to overfishing than the Atlantic Mackerel.

[2 marks]

09.2	Use information from Table 6 to suggest why fishing for Atlantic Mackerel is less likely to produce a lot of by-catch than fishing for Orange Roughy. [2 marks]
09.3	Apart from the total mass of fish caught, what data about fish catches may show that a population is being overfished? [2 marks]
09.4	Use data from Table 6 to calculate the mean annual mass increase for Orange Roughy as a percentage of that for Atlantic Mackerel. Assume both fish reach maximum mass and age. [2 marks]

0 9 . 5 Figure 8 shows the increase in the mass of Atlantic Mackerel as they get older.

Figure 8

Use information from **Table 6** and **Figure 8** to calculate the number of eggs produced by a typical female Atlantic Mackerel in its first year of breeding. Show your working.

[1 mark]

0 9 . 6 Explain how an improvement in net design may reduce by-catch.

[2 marks]

0 9 . 7 Explain how long term catches may be increased by the use of No-Take Zones and minimum catchable size regulations.

[4 marks]

No-Take Zones

Qu	Part	Marking guidance	Comment	Total	AO
		<u> </u>		marks	
09	1	 Any two factors with data from: Orange Roughy has a later age of first breeding: 2 vs 20 yrs Orange Roughy has a lower fecundity: 30 000 vs 80 000 Orange Roughy can be caught before breeding: Mackerel: breeding age: 2; age caught: 2 Orange Roughy: breeding age: 20; age caught 10 	Students must analyse and interpret the data in the table to select the significant values and explain the difference in overfishing risk.	2	AO3
09	2	 Any two of: Mackerel are caught in single species shoals Named more selective fishing method used for Mackerel: /purse seining/hand lines Mackerel are pelagic/there is no demersal/seabed catch 		2	AO3
09	3	 Any two from: Earlier age at first breeding Smaller mean mass Younger mean age Lower genetic diversity 	Students must show they understand the data that must be collected to estimate Maximum Sustainable yield and therefore detect overfishing.	2	AO1
09	4	Mackerel mean growth rate = 0.125 kg yr ⁻¹ Orange Roughy mean growth rate = 0.0467 2.68 times as fast Accept 2.677/2.679	Calculation commentary Max mass/max age = 2.5 kg/20yrs Max mass/max age = 7.0 kg/150 yrs 0.125/0.0466 = 2.68	2	AO2
09	5	First mark 0.2 kg mass at first breeding Second mark 0.2 x 80 000 = 16 000	Calculation commentary From Table 6, the age of first breeding is 2 years. From Figure 8, the mass at age 2 is 200g. From Table 6, fish produce 80 000 eggs per kg.	1	AO2

Level of response mark scheme: 9-mark questions

Level	Marks	Descriptor
	7 - 9	A comprehensive response to the question, with the focus sustained.
		A conclusion is presented in a logical and coherent way, fully supported by relevant judgements.
3		A wide range of knowledge and understanding of natural processes/systems is applied. The answer clearly identifies relationships between environmental issues.
		Relevant environmental terminology is used consistently and accurately throughout, with no more than minor omissions and errors.
		A response to the question which is focussed in parts but lacking appropriate depth.
		A conclusion may be present, supported by some judgements, but it is likely not all will be relevant.
2	4 - 6	A range of knowledge and understanding of natural processes/systems is shown. There is an attempt to apply this to the question, but there may be a few inconsistencies, errors and/or omissions. The answer attempts to identify relationships between environmental issues, with some success.
		Environmental terminology is used, but not always consistently.
		A response to the question which is unbalanced and lacking focus. It is likely to consist of fragmented points that are unrelated.
	1-3	A conclusion may be stated, but it is not supported by any judgments and is likely to be irrelevant.
1		A limited range of knowledge and understanding of natural processes/systems is shown. There is an attempt to apply this to the question, but there are fundamental errors and/or omissions. The answer may attempt to identify relationship between environmental issues, but is rarely successful.
		Limited environmental terminology is used, and a lack of understanding is evident.
	0	Nothing written worthy of credit.

Level of response mark scheme: 25-mark questions

Level	Marks	Descriptors
	21-25	A comprehensive response with a clear and sustained focus. Content is accurate and detailed. Relationships are identified, reflecting the holistic nature of environmental science and the answer as a whole is coherent.
5		A wide range of relevant natural processes/systems and environmental issues are described and articulated clearly. These are applied systematically to the question, with clear relevance to the context.
		Where conclusions are made, these are fully supported by judgements and presented in a logical and coherent way.
		Relevant environmental terminology is used consistently and accurately throughout. If there are errors, these are very minor indeed and not sufficient to detract from the answer.
	16-20	A response in which the focus is largely sustained, with content that is mainly accurate and detailed. Relationships are identified and the answer is largely coherent.
4		A range of natural processes/systems and environmental issues are described and articulated clearly. In most cases, these are applied appropriately to the question but, in some, it is less clear why they are relevant.
		Where conclusions are made, these are supported by judgements which are mostly coherent and relevant.
		Relevant environmental terminology is used consistently and throughout, with no more than minor errors.
		A partial response which is focused in parts. The content is mostly accurate but not always detailed. There is an attempt at identifying relationships, but the answer as a whole is not fully coherent.
3	11-15	A range of natural processes/systems and environmental issues are described, most are articulated clearly. In some cases, these are applied appropriately to the context but, in most, it is less clear why they are relevant.
		Where conclusions are made, it is not always clear how they relate to the judgments given and are likely to contain errors.
		Relevant environmental terminology is used, but not consistently and there may be errors.
	6-10	An unbalanced response, lacking in focus. The content may be inaccurate and lacking detail. There is some attempt at identifying relationships, but the answer is not coherent.
2		A limited range of natural processes/systems and environmental issues are described but not articulated clearly and likely to contain errors and/or omissions. There is a limited attempt to apply them to the context.
		Any conclusions are likely to be asserted, with no supporting judgements and fundamental errors.
		Environmental terminology is used, but not always appropriately and sometimes